
Building Application Profiles to Allow a Better
Usage of the Renewable Energies in Data

Centres

Corentin Dupont

University of Trento Via Sommarive, 5 38123 Trento, Italy

Abstract. Data centres are powerful and power-hungry facilities which
aim at hosting ICT services. The current trend is to, on the one hand,
try to reduce the overall consumption of a data centre, and on the other
hand to prioritize the utilization of renewable energies over brown en-
ergies. Renewable energies tend to be very variable in time (e.g. solar
energy), and thus renewable energy aware algorithms tries to schedule
the applications running in the data centres accordingly. However, one
of the main problems is that most of the time very little information
is known about the applications running in data centres. More specifi-
cally, we need to have more information about the current and planned
workload of an application, and the tolerance of that application to have
its workload rescheduled. In this paper, we present a work in progress
on Plug4Green, a flexible VM manager able to reduce energy consump-
tion in data centres. We extend Plug4Green with the second goal of
increasing the usage of renewable energy in data centres. This includes
the development of specific application profiles, and a new optimization
technique.

1 Introduction

Data centres are large facilities which purpose is to host information processing
and telecommunication services for scientific and/or business applications. Due
to the rise in service demands together with energy costs, the energy efficiency
has now been added as a new key metric for data centres. Energy-aware strate-
gies are beginning to be integrated inside the data centre resource manager. In
practice, a Virtual Machine (VM) placement algorithm considers the data centre
and the workload characteristics to place the VMs among the servers in the most
efficient way, considering performance and energy consumption. This placement
must be done respecting the requirements of the Service Level Agreement (SLA)
existing between the data centre and its clients.

In parallel to reducing the overall energy consumption, the current trend is
to foster the use of renewable energies. Renewable energies have the problem
to be very variable and time-dependent: for example solar power is available
only during the day, and is subject to variations due to the meteorological con-
ditions. Thus, data centre operators must try to shift the workload of running



Energy
Adaptive
App

Resource

Time

Energy
Adaptive
App

Resource

Time

Fig. 1. Adapting applications for a better usage of renewable energies

applications in time, to match it with the availability (or forecast availability)
of renewable energy, as it is depicted in Figure 1.

As preliminary work, we present Plug4Green [1], an energy aware VM man-
ager based on Constraint Programming (CP) [2]. The use of CP allows to attain
a relatively good flexibility and extensibility: indeed data centres are evolving
permanently and new use cases are added regularly. We already proposed and
implemented 23 VM placement constraints to address common concerns such
as hardware compatibilities, performance, security issues, and workload insta-
bility. The usage of CP makes placement constraints, objectives, and algorithms
independent from each other: new concerns can be added in the VM manager
without changing the existing implementation.

The goal of this paper is to present a work in progress on the extension of
Plug4Green, so as to extend its objectives to not only reduce the overall energy
consumption of a data centre, but also allow a better usage of the renewable
energies. A great challenge of efficiently using the renewable energies in a data
centre is to be able to schedule correctly the workload of the applications. This
shows the importance of being able to know the workload an application will
have to run at a certain point of time, to understand under what conditions it
can be shifted or delayed, and in fine to schedule it correctly.

Yet, currently most of the applications running in data centres are unaware of
their self workload: they are unable to predict how much computing power they
will require and when. In data centres, the knowledge of the requirements of an
application in terms of resources is still “meta-knowledge”, i.e. the knowledge
of the data centre operators. For example, in data centres, database indexing
maintenance operations are usually performed at night, to minimize the impact
on the overall erformance. However, in a data centre using primarily solar power,
it would be interesting to shift this task during the lunch break, when the sun
is shining. The knowledge that this particular task, “database indexing”, can
cope with a 12 hour shift, and that it takes approximately half an hour, belongs
to the operator’s knowledge. In this paper, we show how this knowledge can be



encoded and used by Plug4Green to schedule the application workload correctly.
We propose a design for the extended version of Plug4Green and discuss the
possible optimization techniques.

The remainder of this paper is structured as follow: we will first perform a
survey of the related works in Section 2. We then present the extended design
of Plug4Green in Section 3 and preliminary implementation in Section 4. We
conclude in Section 5.

2 Related Work

A few flexible and extensible frameworks for VM allocation have been proposed
recently. For example, BtrPlace [3] is a CP-based flexible consolidation manager.
Plug4Green leverages on Btrplace [4,5]. BtrPlace does not take into consideration
energy related problems and does not provide an operator with the opportunity
of setting optimization objectives. In contrast to BtrPlace, Plug4Green directly
addresses energy consumption problem. This required numerous extensions: the
development of a power model and different model extensions, two objectives
with their associated heuristics, 7 energy-related constraints, and a domain-
specific language to directly exhibit energy concerns and metrics such as PUE,
CUE 1 and Watts, to the end-users.

Similar modular consolidation manager adopting CP paradigm is presented
in [6]. The authors ensure high availability for VM placement by guaranteeing
at any time a certain number of vacant servers to allocate VMs with regards
to placement constraints. The manager scalability is effective for 32 servers and
128 VMs.

A hybrid system proposed in [7] solves a resource reallocation problem. This
system includes Business Rules Management System (BRMS) and CP. A user
can customize both business rules and constraints. The BRMS monitors and
analyses the servers’ state at a period of time to detect overloaded servers and
bottlenecks. Once a problem is identified the BRMS models its instance and
sends it to the CP solver which resolves it within seconds. In contrast to our
manager, both the systems presented in [6] and [7] are not addressing energy-
efficiency problems.

In [8], the authors proposes GreenSwitch, a model-based approach for dy-
namically scheduling the workload and selecting the source of energy to use.
In this work, the authors focuses on the trade-offs involved in powering data
centres with solar and/or wind energy, and propose an implementation of their
solar powered mini data centre called Parasol. With contrast to this approach,
we propose the possibility to schedule the workload at a finer grain, which is the
application level.

1 PUE and CUE are defined by The Green Grid Consortium:
http://www.thegreengrid.org/



3 Design

We present the design selected for the Plug4Green prototype in Section 3.1. We
then present our advancement in defining the application management engine in
Section 3.2. We finally discuss the technology choice made for the optimization
engine, and compare it especially to SMT, a technology that we envisage to use
in the future development of Plug4Green in Section 3.3.

3.1 Plug4Green

Plug4Green is an extensible VM manager. The architecture chosen allows to eas-
ily extend the engine by adding new concerns, without modifying the underlying
algorithms. In particular, new constraints can be added straightforwardly, as we
showed by implementing 23 constraints commonly encountered in data centres,
including energy-oriented ones. As can be seen in Figure 2, Plug4Green has the
following inputs:
– The SLAs
– The data centre configuration
– A Single Allocation request
– Or a Global Optimisation request

SLA
analyzer

DC
analyzer

List of 
constraints

Optimization 
objective

Power 
models

BtrPlace

Choco

Constraints Models 

Com/Prox

Plug4Green

DCIM

Single 
Allocation 

request

Global 
Optimization 

request

DC 
parameters

SLA

Operator

R
ec

o
n

fi
gu

ra
ti

o
n

 
p

la
n

Fig. 2. Plug4Green architecture

Plug4Green considers a set of SLA constraints along with the data centre
configuration to compute a reconfiguration plan as an output. The data centre



configuration captures all the relevant ICT resources of a data centre with their
energy-related attributes and interconnections, in an XML format. The recon-
figuration plan consists of a set of actions such as powering on, powering off,
waking up and putting in idle mode a server, and migrating a VM, that satisfies
all the constraints and minimizes the current objective. The objective can be to
minimize either the power consumption of a federation of data centres, or the
CO2 emissions. The diagram shows the clear separation between the Constraints
part (“what” we want to do) and the Models part (“how” to solve the problem),
which is fundamental for extensibility.

Plug4Green is called by the Data Centre Infrastructure Management (DCIM)
for two different events: Single Allocation or Global Optimisation. The Single Al-
location event is triggered when a new VM have to be allocated. Plug4Green will
compute and return the best server to allocate the VM on, taking into account
the characteristics of the VM, the current state of the data centre, the SLAs
and the current objective. The Global Optimisation event is itself triggered reg-
ularly (every ten minutes in our experimentation) and Plug4Green will return
a reconfiguration plan. In manual mode, the data centre operator has the pos-
sibility to accept or reject this reconfiguration plan, while in automatic mode,
it is enacted automatically. Plug4Green will then execute the reconfiguration
plan in order to reduce the overall consumption of the data centre (either power
consumption or gas emission) while also respecting the SLAs. The Com/Prox
layer ensures that Plug4Green can be plugged easily to different existing DCIM:
its the only part that must be updated when adapting the software for a new
DCIM. Currently, Plug4Green can be integrated into VMWare2, Eucalyptus3,
and HP Matrix Operating Environment4 infrastructures. Plug4Green is based
on the flexible consolidation manager BtrPlace [3].

We evaluated Plug4Green in an industrial test bed, to show that it is both
efficient and scalable:
– Using our framework in a realistic cloud data centre environment allowed

to reduce the overall energy consumption up to 33% and the gas emission
up to 34%. These savings are achieved by considering the servers hardware
heterogeneity, their different energy-efficiency and different compositions of
SLAs.

– We showed by simulation how such an approach can be scalable. In particu-
lar, we were able to compute the improved placement of 7,500 VMs on 1,500
servers, while respecting their SLA.

3.2 Energy Aware Software Controller

In order to allow Plug4Green to optimize the usage of renewable energies, we
extend the design of Plug4Green presented previously: we define the Energy

2 http://www.vmware.com
3 http://eucalyptus.com
4 http://h18004.www1.hp.com/products/solutions/insightdynamics/overview.

html



Aware Software Controller (EASC), as depicted in Figure 3. For each application,
the EASC is in charge of:
– building an energetic profile of that application,
– defining the tasks and working modes,
– building the list of constraints,
– executing the activity plan as computed by Plug4Green.

Fig. 3. Energy Aware Software Controllers for aPaaS

A working mode, specifically, is a particular way for an application to perform
a task, according to its SLA. For example, a typical 3-tier application can have
several VMs containing its web server, and be allowed to scale up or down the
number of VMs according to the number of requests. Each possible combination
of VMs is called a working mode. In order to build the energetic profile of the
working modes, we use Zabbix to collect monitoring data for the VMs used by
the application. We then use Energis5 to compute the energy necessary for each
working modes and tasks of the applications. Energis is a tool using predictive
algorithms based on historical measurement data in order to predict the energy
consumption of a particular VM.

The energetic profiles together with the defined working modes and tasks are
then transmitted to Plug4Green, that will compute an optimized scheduling,
called the activity plan. This activity plan is transmitted back to the EASC to
be performed. In practice, the activity plan consists in spawning more or less
VMs to execute the tasks of the application, such as front-end web servers or

5 Energis: http://www.freemind-group.com/index.php/products/energis.html



back-end databases. A PaaS management tool such as Cloudify6 can provide
such a scalability service, together with OpenStack7.

The EASC is instantiated into three flavours: The EASC aPaaS (Applica-
tion Platform as a Service), showed in the picture, is in charge of controlling
the Cloud applications inside a data centre. It will scale up and down 3-tier
applications according to the availability of renewable energies. The EASC IaaS
(Infrastructure as a Service) is in charge of collaborating with the Cloud man-
agement system to manage the data centre infrastructure. In practice, it we will
tune the VM consolidation factor to allow more or less energy saving and thus
follow the renewable energy availability. Finally, the EASC TM (Tasks Manage-
ment) will shift in time the maintenance tasks that are performed by the data
centre, such as virus scan or server decommissioning tasks. Those tasks will be
scheduled when the renewable energy is available.

3.3 Optimization

Plug4Green is based on Constraint Programming, which is a programming paradigm
devoted to solve Constraint Satisfaction Problems (CSP). In a CSP, relations be-
tween variables are stated in the form of constraints. Each constraint restricts
the combination of values that a set of variables may take simultaneously. While
CP was a very good choice and fulfilled most of the requirements, we discovered
some practical drawbacks. Especially, defining new constraints easily is one of
the main design goal of Plug4Green: as data centres evolves, new use cases ar-
rives regularly, and a qualified operator should be able to insert new constraints
into the engine. However, defining a new constraint takes a lot of lines of code
and is also very error prone. The debugging period for each new constraint is
also quite long. This diminishes the flexibility of the tool, which should imply
the easy creation of new constraints to fit the new requirements arriving in a
data centre.

To tackle this problem of flexibility, we started exploring alternatives to the
couple Constraint Programming/Java. As an alternative to CP, we propose Sat-
isfiability Modulo Theories [9] (SMT). A SMT problem is to determine the sat-
isfiability of ground logical formulas with respect to background theories ex-
pressed in classical first-order logic with equality. Modern SMT solvers integrate
a Boolean satisfiability (SAT) solver with specialized solvers for a set of literals
belonging to each theory. The problem consists in finding an assignment to the
variables that satisfy all constraints. We also surveyed the feasibility of using
Pure Functional languages such as Haskell8 as the base language for the con-
straint engine of Plug4Green. Programs in Haskell tend to be much less verbose
than in Java (in the order of ten time less lines). It is also a declarative language,
like Constraint Programming is, so the expression of constraints is more clear
and natural. Furthermore, Haskell is pure, which combined with its strong type
system allows to reduce drastically the number of bugs.

6 Cloudify: http://getcloudify.org/
7 OpenStack: https://www.openstack.org/
8 http://haskell.org



4 Implementation

To show the usability of both SMT and pure functional languages to tackle en-
ergy efficiency problems in a flexible way, we implemented the classical problem
of packing VMs on servers using the library SBV 9, with only one dimension for
the sake of simplicity. In the example10 showed in Listing 1.1, each VM has a
demand in term of CPU, and each server has a certain CPU capacity to offer.
The objective is to find the placement of the VMs on the servers that minimizes
the number of servers needed. The only constraint applied is that the total CPU
consumption of the VMs that will be running on a server must not exceed the
capacity of that server.

1

2 −−concrete IDs for VMs and servers
3 type VMID = Integer
4 type SID = Integer
5

6 −−symbolic IDs of the servers
7 type SSID = SBV SID
8

9 −−A VM is just a name and a cpuDemand
10 data VM = VM { vmName :: String,
11 cpuDemand :: Integer}
12

13 −−a server has got a name and a certain amount of free CPU
14 data Server = Server { serverName :: String,
15 cpuCapacity :: Integer}
16

17 −−list of VMs
18 vms :: Map VMID VM
19 vms = fromList $ zip [0..] [VM ”VM1” 100, VM ”VM2” 50, VM ”VM3” 15]
20

21 −−list of servers
22 servers :: Map SID Server
23 servers = fromList $ zip [0..] [Server ”Server1” 100, Server ”Server2” 100, Server ”Server3” 200]
24

25 −−number of servers ON (which we'll try to minimize)
26 numberServersOn :: Map VMID SSID −> SInteger
27 numberServersOn = count . elems . M.map (./= 0) . vmCounts
28

29 −−computes the number of VMs on each servers
30 vmCounts :: Map VMID SSID −> Map SID SInteger
31 vmCounts vmls = M.mapWithKey count servers where
32 count sid = sum [ite (mysid .== literal sid) 1 0 | mysid <− elems vmls]
33

34 −−All the CPU constraints
35 cpuConstraints :: Map VMID SSID −> SBool
36 cpuConstraints vmls = bAnd $ elems $ M.mapWithKey criteria (serverCPUHeights vmls) where
37 criteria :: SID −> SInteger −> SBool
38 criteria sid height = (literal $ cpuCapacity $ fromJust $ M.lookup sid servers) .> height
39

40 −−computes the CPU consummed by the VMs on each servers
41 serverCPUHeights :: Map VMID SSID −> Map SID SInteger
42 serverCPUHeights vmls = M.mapWithKey sumVMsHeights servers where
43 sumVMsHeights :: SID −> Server −> SInteger
44 sumVMsHeights sid = sum [ite (sid' .== literal sid) (literal $ cpuDemand $ fromJust $ M.lookup vmid

vms) 0 | (vmid, sid') <− M.assocs vmls]
45

9 http://leventerkok.github.io/sbv/
10 The full implementation can be seen at https://github.com/cdupont/Plug4Green-

design



46 −−solves the VM placement problem
47 vmPlacementProblem :: IO (Maybe (Map VMID SID))
48 vmPlacementProblem = minimize' numberServersOn cpuConstraints
49

50 main = do
51 s <− vmPlacementProblem
52 putStrLn $ show s

Listing 1.1. Example of VM placement problem solved using SMT

When run, this program returns the placement for the VMs that minimizes
the number of necessary servers. In this case, it will place all three VMs on
the third server. While it is difficult to compare, it is anyway striking that
this program is shorter than its equivalent in Java/Choco11. The definition of a
constraint takes only a few lines (for example numberServersOn takes 2 lines)
and flows with the program definition. Furthermore, as it is usually the case
in Haskell, the type signature of the functions are carrying a lot of information
that can be used both by the programmer to understand and reason about the
program, and by the compiler to prove its correctness. For example, the type
signature numberServersOn :: Map VMID SSID -> SInteger makes it clear that
the function numberServersOn is a constraint that takes the positions of all the
VMs on the servers (denoted as a mapping between the VM ids and the server
symbolic ids) and returns a symbolic integer representing the necessary number
of servers.

Furthermore, programming at the symbolic level, as it is required when de-
signing a CSP, is not very different than programming in concrete Haskell. This
is because a lot of the Haskell standard functions, like the function sum in our
example program, can be reused in a constraint programming program. The def-
inition of sum in the standard library of Haskell is generic enough to be able to
be used also at the symbolic level. On the other hand, programming in Choco
is completely different than programming in concrete Java: all the operators are
necessarily different, due to the low genericity of Java. Therefore, the intuition
of the Java programmer cannot be completely reused.

SBV is also a theorem prover, and that can be used to prove properties of
the constraints expressed. For example, we might want to prove some proper-
ties about our constraint vmCounts. This function counts the number of VMs
present on each servers. We want to prove the property that the count of VMs
on a server has for absolute maximum the total numbers of VMs present in the
data centre.

1

2 *Main> prove $ \x y −> bAll (.<= 2) $ vmCounts' [x, y]
3 Q.E.D.

Listing 1.2. Example of proof about a constraint

The listing 1.2 show how we can ask SBV to prove that the number of
VMs per server computed by the constraint vmCounts cannot exceed the total

11 for example this implementation of bin packing: http://www.dcs.gla.ac.uk/ pat/cp-
M/jchoco/binPack/CPBinPack.java



number of VMs (in this simplified example with only 2 VMs and a version of
vmCounts defined for lists instead of maps). SBV simply replies with Q.E.D,
showing that it found a proof of our property (this proof can be exhibited if
needed).

In order to give to an optimization engine complementary informations about
the profile of an application, we use a configuration file. An example is given in
Listing 1.3 (written in Yaml).

1 Name: PetClinic
2 Tasks:
3 − Name: T1
4 Duration: 1h
5 StartTask: ./startT1
6 Dependencies:
7 − finishBefore T2
8 − finishBefore 00:00
9 WorkingModes:

10 − Name: W1D1
11 SwitchMode: ./switchMode.sh W1D1
12 Resources: m1.small
13 TimeFrame: WeekEnds
14 − Name: W1D2
15 SwitchMode: ./switchMode.sh W1D2
16 Resources: m1.small
17 TimeFrame: WeekDays, WeekEnds
18 − Name: T2
19 Duration: 2h
20 StartTask: ./startT2
21 Dependencies:
22 − finishBefore 00:00
23 Constraints:
24 − MutuallyExclusive: W1D1, W1D2
25 − AtLeastOne: W1D1, W1D2

Listing 1.3. Example of profile configuration file

The above listing describes a 3-Tier application, PetClinic, that has an Apache
front-end, a Java back-end and a database. The front-end as well as the back-end
can be scaled up and down using Cloudify: for example in the case too much
web pages are requested, a new VM will be spawned and the Apache server will
be installed in it using Chef12. The example file defines two tasks T1 and T2.
Tasks define a punctual activity with a duration. We define a script able to start
the task, and some absolute and relative dependencies. We also define working
modes, W1D1 and W1D2, with the way we can switch from one mode to an-
other (switchMode shell script), the needs in term of resources, and the possibly
repetitive time frames during which those working modes are authorized. Fi-
nally we define overall constraints, such as ”MutuallyExclusive”, which describe
a relation between two or more working modes that should not be active at the
same time. Another example ”AtLeastOne” describe the fact that there should
be at least one working mode active at all time.

12 http://www.getchef.com/



5 Conclusion

In this paper we presented our plan to enhance Plug4Green, an energy-aware VM
manager based on Constraint Programming, in particular to allow it to increase
the usage of renewable energies in data centres. We introduced the Energy Aware
Software Controller, a new component communicating with Plug4Green and able
to build energy profiles for Cloud applications, and to control the application
following the activity plans computed by Plug4Green. To compute the activity
plans, we surveyed the SAT Modulo Theory technique in order to integrate it
inside Plug4Green.

Acknowledgments & Availability

The author would like to thanks the University of Trento, the EU FP7 projects
FIT4Green and DC4Cities, and the Create-Net research centre. Evaluations pre-
sented in this paper were carried out by HP Innovation Centre Milan and INRIA.

Plug4Green is licensed under the terms of the Apache 2.0 License. The cur-
rent prototype is available for download at https://github.com/fit4green/

Plug4Green.

References

1. Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien
Hermenier. An energy aware framework for virtual machine placement in cloud
federated data centres. In Proceedings of the 3rd International Conference on Future
Energy Systems: Where Energy, Computing and Communication Meet, e-Energy ’12,
pages 4:1–4:10. ACM, 2012.

2. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

3. Fabien Hermenier, Julia Lawall, and Gilles Muller. Btrplace: A flexible consolidation
manager for highly available applications. IEEE Transactions on Dependable and
Secure Computing, 10(5), 2013.

4. Fabien Hermenier, Sophie Demassey, and Xavier Lorca. Bin repacking schedul-
ing in virtualized datacenters. In Proceedings of the 17th international conference
on Principles and practice of constraint programming, CP’11, pages 27–41, Berlin,
Heidelberg, 2011. Springer-Verlag.

5. Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. Entropy: a consolidation manager for clusters. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution environ-
ments, VEE ’09, pages 41–50. ACM, 2009.

6. E. Bin, O. Biran, O. Boni, E. Hadad, E.K. Kolodner, Y. Moatti, and D.H. Lorenz.
Guaranteeing high availability goals for virtual machine placement. In Distributed
Computing Systems (ICDCS), 2011 31st International Conference on, pages 700–
709, 2011.



7. Roman Krogt, Jacob Feldman, James Little, and David Stynes. An integrated
business rules and constraints approach to data centre capacity management. In
David Cohen, editor, Principles and Practice of Constraint Programming CP 2010,
volume 6308 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010.

8. Íñigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini. Para-
sol and greenswitch: Managing datacenters powered by renewable energy. SIGARCH
Comput. Archit. News, 41(1):51–64, March 2013.

9. Josep Suy Franch. Satisfiability modulo theories approach to constraint program-
ming. 2013.


